skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Yang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a catalog of 8440 candidate very metal-poor (VMP; [Fe/H] ≤ −2.0) main-sequence turn-off (MSTO) and red giant stars in the Milky Way, identified from low-resolution spectra in LAMOST DR10. More than 7000 of these candidates are brighter thanG ∼ 16, making them excellent targets for high-resolution spectroscopic follow-up with 4–10 m class telescopes. Unlike most previous studies, we employed an empirical calibration to estimate metallicities from the equivalent widths of the calcium triplet lines, taking advantage of the high signal-to-noise ratio in the red arm of LAMOST spectra. We further refined this calibration to improve its reliability for more distant stars. This method enables robust identification of VMP candidates with metallicities as low as [Fe/H] = −4.0 among both MSTO and red giant stars. Comparisons with metal-poor samples from other spectroscopic surveys and high-resolution follow-up observations confirm the accuracy of our estimates, showing a typical median offset of ∼0.1 dex and a standard deviation of ∼0.2 dex. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Abstract We present maps of the mean metallicity distributions on the GalactocentricR–Zplane at different azimuthal angles using red clump stars selected from the LAMOST and APOGEE surveys. In the inner disk (R < 11 kpc), the metallicity distribution is symmetric between the upper and lower disk. However, we find a north–south metallicity asymmetry in the outer disk (R > 11 kpc), especially toward the anti-Galactic center (−5 < Φ < 15°) direction. By further dissecting the map in age space, we detect this asymmetry across all mono-age stellar populations. However, the asymmetry is less pronounced in older populations (τ > 8 Gyr) compared to younger ones (τ < 6 Gyr). This reduced significance likely stems from three factors: larger age uncertainties, fewer stars in the outer disk, and the kinematically hotter nature of older populations. The observed metallicity asymmetry may be the consequence of the perturbation of the recent pericentric passage through the Galactic disk and tidal force of the well-known Sagittarius dwarf galaxy. 
    more » « less
    Free, publicly-accessible full text available July 31, 2026
  3. Abstract We present an updated catalog of stellar parameters, including effective temperature, luminosity classification, and metallicity, for over fifty million stars from the SkyMapper Southern Survey (SMSS) DR4 and Gaia DR3. The accuracy of the derived parameters remains consistent with those achieved with SMSS DR2 using the same methods. Thanks to the advancements in SMSS DR4, photometric-metallicity estimates are now available for an unprecedented number of metal-poor stars. The catalog includes over 13 million metal-poor ([Fe/H] ≤ −1) stars, nearly three million very metal-poor ([Fe/H] ≤ −2.0) stars, and approximately 120,000 extremely metal-poor ([Fe/H] ≤ −3.0) stars—representing an increase by a factor of 4–6 compared to SMSS DR2. This catalog, combined with other stellar parameters obtained through our efforts, will be made available at the China-VO and Zenodo. 
    more » « less
    Free, publicly-accessible full text available April 7, 2026
  4. Free, publicly-accessible full text available July 1, 2026
  5. Abstract Utilizing Zwicky Transient Facility (ZTF) data and existing RR Lyrae stars (RRLs) catalogs, this study achieves the first calibration of theP−ϕ31−R21− [Fe/H] andP−ϕ31−A2−A1− [Fe/H] relations in the ZTF photometric system for RRab and RRc stars. We also recalibrate the period–absolute magnitude–metallicity (PMZ) and period–Wesenheit–metallicity (PWZ) relations in the ZTFgribands for RRab and RRc stars. Based on nearly 4100 stars with precise measurements ofP,ϕ31,A2, andA1, and available spectroscopic metallicity estimates, the photometric metallicity relations exhibit strong internal consistency across different bands, supporting the use of a weighted averaging method for the final estimates. The photometric metallicity estimates of globular clusters based on RR Lyrae members also show excellent agreement with high-resolution spectroscopic measurements, with a typical scatter of 0.15 dex for RRab stars and 0.14 dex for RRc stars, respectively. Using hundreds of local RRLs with newly derived photometric metallicities and precise Gaia Data Release 3 parallaxes, we establish the PMZ and PWZ relations in multiple bands. Validation with globular cluster RR Lyrae members reveals typical distance errors of 3.1% and 3.0% for the PMZ relations, and 3.1% and 2.6% for the PWZ relations for RRab and RRc stars, respectively. Compared to PMZ relations, the PWZ relations are tighter and almost unbiased, making them the recommended choice for distance calculations. We present a catalog of 73,795 RRLs with precise photometric metallicities; over 95% of them have accurate distance measurements. Compared to Gaia DR3, approximately 25,000 RRLs have precise photometric metallicities and distances derived for the first time. 
    more » « less
    Free, publicly-accessible full text available April 14, 2026
  6. Abstract The stellar atmospheric parameters and physical properties of stars in the Kepler Input Catalog (KIC) are of great significance for the study of exoplanets, stellar activity, and asteroseismology. However, despite extensive effort over the past decades, accurate spectroscopic estimates of these parameters are available for only about half of the stars in the full KIC. In our work, by training relationships between photometric colors and spectroscopic stellar parameters from Gaia DR3, the Kepler-INT Survey, Large Sky Area Multi-Object Fiber Spectroscopic Telescope DR10, and Galactic Evolution Experiment at Apache Point Observatory DR17, we have obtained atmospheric parameter estimates for over 195,000 stars, accounting for 97% of the total sample of KIC stars. We obtain 1σuncertainties of 0.1 dex on metallicity [Fe/H], 100 K on effective temperatureTeff, and 0.2 dex on surface gravity logg. In addition, based on these atmospheric parameters, we estimated the ages, masses, radii, and surface gravities of these stars using the commonly adopted isochrone-fitting approach. External comparisons indicate that the resulting precision for turnoff stars is 20% in age; for dwarf stars, it is 0.07Min mass, 0.05Rin radius, and 0.12 dex in surface gravity; and for giant stars, it is 0.14Min mass, 0.73Rin radius, and 0.11 dex in surface gravity. 
    more » « less
    Free, publicly-accessible full text available February 17, 2026
  7. Abstract We present a pioneering achievement in the high-precision photometric calibration of CMOS-based photometry, by application of the Gaia Blue Photometer or Red Photometer (XP) spectra–based synthetic photometry method to the mini-SiTian array (MST) photometry. Through 79 repeated observations of thef02field on the night, we find good internal consistency in the calibrated MSTGMST-band magnitudes for relatively bright stars, with a precision of about 4 mmag forGMST ∼ 13. Results from more than 30 different nights (over 3100 observations) further confirm this internal consistency, indicating that the 4 mmag precision is stable and achievable over timescales of months. An independent external validation using spectroscopic data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope DR10 and high-precision photometric data using CCDs from Gaia DR3 reveals a zero-point consistency better than 1 mmag. Our results clearly demonstrate that CMOS photometry is on par with CCD photometry for high-precision results, highlighting the significant capabilities of CMOS cameras in astronomical observations, especially for large-scale telescope survey arrays. 
    more » « less
    Free, publicly-accessible full text available March 19, 2026
  8. Abstract We combine photometric data from GALEX GR6+7 All-Sky Imaging Survey and Gaia Early Data Release 3 with stellar parameters from the SAGA and PASTEL catalogs to construct high-quality training samples for dwarfs (0.4 < BP − RP < 1.6) and giants (0.6 < BP − RP < 1.6). We apply careful reddening corrections using empirical temperature- and extinction-dependent extinction coefficients. Using the two samples, we establish a relationship between stellar loci (near-ultraviolet (NUV)−BP versus BP − RP colors), metallicity, andMG. For a given BP − RP color, a 1 dex change in [Fe/H] corresponds to an approximately 1 magnitude change in NUV − BP color for solar-type stars. These relationships are employed to estimate metallicities based on NUV − BP, BP − RP, andMG. Thanks to the strong metallicity dependence in the GALEX NUV band, our models enable a typical photometric-metallicity precision of approximatelyσ[Fe/H]= 0.11 dex for dwarfs andσ[Fe/H]= 0.17 dex for giants, with an effective metallicity range extending down to [Fe/H] = −3.0 for dwarfs and [Fe/H] = −4.0 for giants. We also find that the NUV-band-based photometric-metallicity estimate is not as strongly affected by carbon enhancement as previous photometric techniques. With the GALEX and Gaia data, we have estimated metallicities for about 5 million stars across almost the entire sky, including approximately 4.5 million dwarfs and 0.5 million giants. This work demonstrates the potential of the NUV band for estimating photometric metallicities, and sets the groundwork for utilizing the NUV data from space telescopes such as the upcoming Chinese Space Station Telescope. 
    more » « less